Model Konversi Pelanggan untuk Menggunakan Aplikasi Pemesanan Makanan melalui Atribut Psikologis dan Teknologi

Authors

  • Novita Yolanda Sekolah Tinggi Manajemen Labora
  • Bimmo Dwi Baskoro Sekolah Tinggi Manajemen Labora
  • Jayadi Jayadi Sekolah Tinggi Manajemen Labora
  • Sudarmadji Sudarmadji Sekolah Tinggi Manajemen Labora

DOI:

https://doi.org/10.46918/point.v3i2.1113

Keywords:

aplikasi, atribut psikologis, atribut teknologi, konversi pelanggan, Jakarta

Abstract

Tujuan penelitian ini adalah untuk mengetahui pengaruh atribut psikologis dan teknologi pada konversi pelanggan untuk menggunakan aplikasi pemesanan makanan. Metode convenience sampling digunakan untuk mengumpulkan tanggapan dari responden. Sebanyak 374 responden telah dianalisis dengan pendekatan SEM-PLS. Hasil penelitian menunjukkan bahwa kemudahan penggunaan yang dirasakan, kegunaan yang dirasakan, insentif yang dirasakan, informasi yang dirasakan, manajemen hubungan pelanggan, dan sistem manajemen pesanan mempengaruhi konversi pelanggan secara signifikan. Kontribusi utama dari penelitian ini adalah analisis empiris atribut psikologis dan teknologi pada konversi pelanggan terhadap aplikasi pemesanan makanan khususnya di Jakarta.

References

Apanasevic, T., Markendahl, J., & Arvidsson, N. (2016). Stakeholders’ expectations of mobile payment in retail: lessons from Sweden. International Journal of Bank Marketing, 34(1), 37–61. https://doi.org/10.1108/IJBM-06-2014-0064

Arvidsson, N. (2014). Consumer attitudes on mobile payment services - results from a proof of concept test. International Journal of Bank Marketing, 32(2), 150–170. https://doi.org/10.1108/IJBM-05-2013-0048

Atulkar, S. (2019). Measuring the Effects of Retail Functional Strategies on the Growth of Organized Retail Environments. Journal of Marketing Vistas, 9(1), 58–68.

Atulkar, S. (2020). Brand trust and brand loyalty in mall shoppers. Marketing Intelligence and Planning, 38(5), 559–572. https://doi.org/10.1108/MIP-02-2019-0095

Atulkar, S., & Kesari, B. (2017). Impulse Buying: A Consumer Trait Prospective in Context of Central India. Global Business Review, 19(2), 477–493. https://doi.org/10.1177/0972150917713546

Atulkar, S., & Kesari, B. (2018). Role of consumer traits and situational factors on impulse buying: does gender matter? International Journal of Retail and Distribution Management, 46(4), 386–405. https://doi.org/10.1108/IJRDM-12-2016-0239

Bagozzi, R. P., & Edwards, J. R. (1998). A general approach for representing constructs in organizational research. Organizational Research Methods, 1(1), 45–87. https://doi.org/10.1177/109442819800100104

Chen, L. Da. (2008). A model of consumer acceptance of mobile payment. International Journal of Mobile Communications, 6(1), 32–52. https://doi.org/10.1504/IJMC.2008.015997

Chin, W. W., Marcelin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14(2). https://doi.org/10.1287/isre.14.2.189.16018

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and Intrinsic Motivation to Use Computers in the Workplace. Journal of Applied Social Psychology, 22(14), 1111–1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x

Davison, A. C., Hinkley, D. V., & Young, G. A. (2003). Recent Developments in Bootstrap Methodology. Statistical Science, 18(2), 141–157. https://doi.org/10.1214/ss/1063994969
Elliot, S., Li, G., & Choi, C. (2013). Understanding service quality in a virtual travel community environment. Journal of Business Research, 66(8), 1153–1160. https://doi.org/10.1016/j.jbusres.2012.03.011

Fornell, C., & Larcker, D. F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3), 382. https://doi.org/10.2307/3150980

Hagberg, J., Sundstrom, M., & Egels-Zandén, N. (2016). The digitalization of retailing: an exploratory framework. International Journal of Retail and Distribution Management, 44(7), 694–712. https://doi.org/10.1108/IJRDM-09-2015-0140

Hair, Joe F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. https://doi.org/10.2753/MTP1069-6679190202

Hair, Joe F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106–121. https://doi.org/10.1108/EBR-10-2013-0128

Hair, Joseph F., Sarstedt, M., & Ringle, C. M. (2019). Rethinking some of the rethinking of partial least squares. European Journal of Marketing, 53(4), 566–584. https://doi.org/10.1108/EJM-10-2018-0665

Harwani, Y., & Fauziyah, F. (2020). Keputusan Pembelian Konsumen Gerai Makanan Cepat Saji Ditinjau dari Kualitas Produk, Persepsi Harga dan Iklan. Business Economic, Communication, and Social Sciences (BECOSS) Journal, 2(3), 285–291. https://doi.org/10.21512/becossjournal.v2i3.6659

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8

Ho, J. C., Wu, C. G., Lee, C. S., & Pham, T. T. T. (2020). Factors affecting the behavioral intention to adopt mobile banking: An international comparison. Technology in Society, 63(August), 101360. https://doi.org/10.1016/j.techsoc.2020.101360

Iyer, G. R., Blut, M., Xiao, S. H., & Grewal, D. (2020). Impulse buying: a meta-analytic review. Journal of the Academy of Marketing Science, 48(3), 384–404. https://doi.org/10.1007/s11747-019-00670-w

Johnson, V. L., Kiser, A., Washington, R., & Torres, R. (2018). Limitations to the rapid adoption of M-payment services: Understanding the impact of privacy risk on M-Payment services. Computers in Human Behavior, 79, 111–122. https://doi.org/10.1016/j.chb.2017.10.035

Kapoor, A. P., & Vij, M. (2018). Technology at the dinner table: Ordering food online through mobile apps. Journal of Retailing and Consumer Services, 43(March), 342–351. https://doi.org/10.1016/j.jretconser.2018.04.001

Katadata. (2021). Daftar Negara Pengguna Smartphone Terbanyak, Indonesia Urutan Berapa? Retrieved from https://databoks.katadata.co.id/datapublish/2021/07/01/daftar-negara-pengguna-smartphone-terbanyak-indonesia-urutan-berapa#:~:text=Kemudian%2C Indonesia menempati posisi keempat,%2C6%25 dari total populasi.

Kim, H. W., Xu, Y., & Gupta, S. (2012). Which is more important in Internet shopping, perceived price or trust? Electronic Commerce Research and Applications, 11(3), 241–252. https://doi.org/10.1016/j.elerap.2011.06.003

Kumar, A., & Anjaly, B. (2017). How to measure post-purchase customer experience in online retailing? A scale development study. International Journal of Retail and Distribution Management, 45(12), 1277–1297. https://doi.org/10.1108/IJRDM-01-2017-0002

Kumar, Ashish, Dhingra, S., Batra, V., & Purohit, H. (2020). A Framework of Mobile Banking Adoption in India. Journal of Open Innovation: Technology, Market, and Complexity, 6(2), 1–17. https://doi.org/10.3390/JOITMC6020040

Liu, Y., & Dewitte, S. (2021). A replication study of the credit card effect on spending behavior and an extension to mobile payments. Journal of Retailing and Consumer Services, 60(August 2020), 102472. https://doi.org/10.1016/j.jretconser.2021.102472

Madan, K., & Yadav, R. (2018). Understanding and predicting antecedents of mobile shopping adoption: A developing country perspective. Asia Pacific Journal of Marketing and Logistics, 30(1), 139–162. https://doi.org/10.1108/APJML-02-2017-0023

Malik, A., Suresh, S., & Sharma, S. (2017). Factors influencing consumers’ attitude towards adoption and continuous use of mobile applications: A conceptual model. Procedia Computer Science, 122, 106–113. https://doi.org/10.1016/j.procs.2017.11.348

Marriott, H. R., & Williams, M. D. (2018). Exploring consumers perceived risk and trust for mobile shopping: A theoretical framework and empirical study. Journal of Retailing and Consumer Services, 42(February), 133–146. https://doi.org/10.1016/j.jretconser.2018.01.017

Medcom. (2021). Bisnis Layanan Pesan Antar Makanan Online Meningkat Selama Pandemi. Retrieved from https://www.medcom.id/ekonomi/bisnis/8kolVnWK-bisnis-layanan-pesan-antar-makanan-online-meningkat-selama-pandemi

Olivier, X., & Terblanche, N. S. (2016). An investigation into the antecedents and outcomes of the m-shopping experience. The Business and Management Review, 7(5), 263–287.

Osei-Frimpong, K. (2019). Understanding consumer motivations in online social brand engagement participation: Implications for retailers. International Journal of Retail and Distribution Management, 47(5), 511–529. https://doi.org/10.1108/IJRDM-08-2018-0151

Qin, L., Kim, Y., & Tan, X. (2018). Understanding the Intention of Using Mobile Social Networking Apps Across Cultures. International Journal of Human-Computer Interaction, 34(12), 1183–1193. https://doi.org/10.1080/10447318.2018.1428262

Reimers, V., & Clulow, V. (2009). Retail centres: It’s time to make them convenient. International Journal of Retail & Distribution Management, 37(7), 541–562. https://doi.org/10.1108/09590550910964594

Sane, V., & Chopra, K. (2014). Analytical Study of Shopping Motives of Young Customers for Selected Product Categories with Reference to Organized Retailing in Select Metropolitan Select Cities of India. Procedia - Social and Behavioral Sciences, 133, 160–168. https://doi.org/10.1016/j.sbspro.2014.04.181

Savastano, M., Bellini, F., D’Ascenzo, F., & De Marco, M. (2019). Technology adoption for the integration of online–offline purchasing: Omnichannel strategies in the retail environment. International Journal of Retail and Distribution Management, 47(5), 474–492. https://doi.org/10.1108/IJRDM-12-2018-0270

Shankar, A., & Datta, B. (2018). Factors Affecting Mobile Payment Adoption Intention: An Indian Perspective. Global Business Review, 19(3_suppl), S72–S89. https://doi.org/10.1177/0972150918757870

Shankar, A., & Kumari, P. (2016). Factors affecting mobile banking adoption behavior in India. Journal of Internet Banking and Commerce, 21(1), 1–24.

Singh, N., Sinha, N., & Liébana-Cabanillas, F. J. (2020). Determining factors in the adoption and recommendation of mobile wallet services in India: Analysis of the effect of innovativeness, stress to use and social influence. International Journal of Information Management, 50(May 2019), 191–205. https://doi.org/10.1016/j.ijinfomgt.2019.05.022

Singh, R. (2019). Why do online grocery shoppers switch or stay? An exploratory analysis of consumers’ response to online grocery shopping experience. International Journal of Retail and Distribution Management, 47(12), 1300–1317. https://doi.org/10.1108/IJRDM-10-2018-0224

Taylor, D. G., & Levin, M. (2014). Predicting mobile app usage for purchasing and information-sharing. International Journal of Retail and Distribution Management, 42(8), 759–774. https://doi.org/10.1108/IJRDM-11-2012-0108

Taylor, E. (2016). Mobile payment technologies in retail: a review of potential benefits and risks. International Journal of Retail and Distribution Management, 44(2), 159–177. https://doi.org/10.1108/IJRDM-05-2015-0065

Teller, C., Brusset, X., & Kotzab, H. (2019). Physical and digital market places – where marketing meets operations. International Journal of Retail and Distribution Management, 47(12), 1225–1231. https://doi.org/10.1108/IJRDM-12-2019-299

Tenenhaus, M., Vinzi, V. E., Chatelin, Y. M., & Lauro, C. (2005). PLS path modeling. Computational Statistics and Data Analysis, 48(1), 159–205. https://doi.org/10.1016/j.csda.2004.03.005

Ting, H., Yacob, Y., Liew, L., & Lau, W. M. (2016). Intention to Use Mobile Payment System: A Case of Developing Market by Ethnicity. Procedia - Social and Behavioral Sciences, 224(August 2015), 368–375. https://doi.org/10.1016/j.sbspro.2016.05.390

Ünal, S., Erci?, A., & Keser, E. (2011). Attitudes towards mobile advertising - A research to determine the differences between the attitudes of youth and adults. Procedia - Social and Behavioral Sciences, 24, 361–377. https://doi.org/10.1016/j.sbspro.2011.09.067

Wang, Y. S., Tseng, T. H., Wang, W. T., Shih, Y. W., & Chan, P. Y. (2019). Developing and validating a mobile catering app success model. International Journal of Hospitality Management, 77(December 2016), 19–30. https://doi.org/10.1016/j.ijhm.2018.06.002

Wetzels, M., Odekerken-Schroder, G., & Oppen, C. Van. (2009). Using PLS path modeling for assessing hierarchical construct models: guidelines and empirical illustration. MIS Quarterly, 33(1), 177–195.

Yang, Y., Liu, Y., Li, H., & Yu, B. (2015). Understanding perceived risks in mobile payment acceptance. Industrial Management and Data Systems, 115(2), 253–269. https://doi.org/10.1108/IMDS-08-2014-0243

Ye, P.-H., & Liu, L.-Q. (2017). Influence Factors of Users Satisfaction of Mobile Commerce -An Empirical Research in China. Advances in Economics, Business and Management Research, 50, 208–217. https://doi.org/10.2991/mse-17.2017.50

Yeo, S. F., Tan, C. L., Teo, S. L., & Tan, K. H. (2021). The role of food apps servitization on repurchase intention: A study of FoodPanda. International Journal of Production Economics, 234(February), 108063. https://doi.org/10.1016/j.ijpe.2021.108063

Downloads

Published

2021-12-14

How to Cite

Model Konversi Pelanggan untuk Menggunakan Aplikasi Pemesanan Makanan melalui Atribut Psikologis dan Teknologi. (2021). POINT: Jurnal Ekonomi Dan Manajemen, 3(2), 1-20. https://doi.org/10.46918/point.v3i2.1113