Model Konversi Pelanggan untuk Menggunakan Aplikasi Pemesanan Makanan melalui Atribut Psikologis dan Teknologi
DOI:
https://doi.org/10.46918/point.v3i2.1113Keywords:
aplikasi, atribut psikologis, atribut teknologi, konversi pelanggan, JakartaAbstract
Tujuan penelitian ini adalah untuk mengetahui pengaruh atribut psikologis dan teknologi pada konversi pelanggan untuk menggunakan aplikasi pemesanan makanan. Metode convenience sampling digunakan untuk mengumpulkan tanggapan dari responden. Sebanyak 374 responden telah dianalisis dengan pendekatan SEM-PLS. Hasil penelitian menunjukkan bahwa kemudahan penggunaan yang dirasakan, kegunaan yang dirasakan, insentif yang dirasakan, informasi yang dirasakan, manajemen hubungan pelanggan, dan sistem manajemen pesanan mempengaruhi konversi pelanggan secara signifikan. Kontribusi utama dari penelitian ini adalah analisis empiris atribut psikologis dan teknologi pada konversi pelanggan terhadap aplikasi pemesanan makanan khususnya di Jakarta.
References
Arvidsson, N. (2014). Consumer attitudes on mobile payment services - results from a proof of concept test. International Journal of Bank Marketing, 32(2), 150–170. https://doi.org/10.1108/IJBM-05-2013-0048
Atulkar, S. (2019). Measuring the Effects of Retail Functional Strategies on the Growth of Organized Retail Environments. Journal of Marketing Vistas, 9(1), 58–68.
Atulkar, S. (2020). Brand trust and brand loyalty in mall shoppers. Marketing Intelligence and Planning, 38(5), 559–572. https://doi.org/10.1108/MIP-02-2019-0095
Atulkar, S., & Kesari, B. (2017). Impulse Buying: A Consumer Trait Prospective in Context of Central India. Global Business Review, 19(2), 477–493. https://doi.org/10.1177/0972150917713546
Atulkar, S., & Kesari, B. (2018). Role of consumer traits and situational factors on impulse buying: does gender matter? International Journal of Retail and Distribution Management, 46(4), 386–405. https://doi.org/10.1108/IJRDM-12-2016-0239
Bagozzi, R. P., & Edwards, J. R. (1998). A general approach for representing constructs in organizational research. Organizational Research Methods, 1(1), 45–87. https://doi.org/10.1177/109442819800100104
Chen, L. Da. (2008). A model of consumer acceptance of mobile payment. International Journal of Mobile Communications, 6(1), 32–52. https://doi.org/10.1504/IJMC.2008.015997
Chin, W. W., Marcelin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14(2). https://doi.org/10.1287/isre.14.2.189.16018
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and Intrinsic Motivation to Use Computers in the Workplace. Journal of Applied Social Psychology, 22(14), 1111–1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x
Davison, A. C., Hinkley, D. V., & Young, G. A. (2003). Recent Developments in Bootstrap Methodology. Statistical Science, 18(2), 141–157. https://doi.org/10.1214/ss/1063994969
Elliot, S., Li, G., & Choi, C. (2013). Understanding service quality in a virtual travel community environment. Journal of Business Research, 66(8), 1153–1160. https://doi.org/10.1016/j.jbusres.2012.03.011
Fornell, C., & Larcker, D. F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3), 382. https://doi.org/10.2307/3150980
Hagberg, J., Sundstrom, M., & Egels-Zandén, N. (2016). The digitalization of retailing: an exploratory framework. International Journal of Retail and Distribution Management, 44(7), 694–712. https://doi.org/10.1108/IJRDM-09-2015-0140
Hair, Joe F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. https://doi.org/10.2753/MTP1069-6679190202
Hair, Joe F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106–121. https://doi.org/10.1108/EBR-10-2013-0128
Hair, Joseph F., Sarstedt, M., & Ringle, C. M. (2019). Rethinking some of the rethinking of partial least squares. European Journal of Marketing, 53(4), 566–584. https://doi.org/10.1108/EJM-10-2018-0665
Harwani, Y., & Fauziyah, F. (2020). Keputusan Pembelian Konsumen Gerai Makanan Cepat Saji Ditinjau dari Kualitas Produk, Persepsi Harga dan Iklan. Business Economic, Communication, and Social Sciences (BECOSS) Journal, 2(3), 285–291. https://doi.org/10.21512/becossjournal.v2i3.6659
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8
Ho, J. C., Wu, C. G., Lee, C. S., & Pham, T. T. T. (2020). Factors affecting the behavioral intention to adopt mobile banking: An international comparison. Technology in Society, 63(August), 101360. https://doi.org/10.1016/j.techsoc.2020.101360
Iyer, G. R., Blut, M., Xiao, S. H., & Grewal, D. (2020). Impulse buying: a meta-analytic review. Journal of the Academy of Marketing Science, 48(3), 384–404. https://doi.org/10.1007/s11747-019-00670-w
Johnson, V. L., Kiser, A., Washington, R., & Torres, R. (2018). Limitations to the rapid adoption of M-payment services: Understanding the impact of privacy risk on M-Payment services. Computers in Human Behavior, 79, 111–122. https://doi.org/10.1016/j.chb.2017.10.035
Kapoor, A. P., & Vij, M. (2018). Technology at the dinner table: Ordering food online through mobile apps. Journal of Retailing and Consumer Services, 43(March), 342–351. https://doi.org/10.1016/j.jretconser.2018.04.001
Katadata. (2021). Daftar Negara Pengguna Smartphone Terbanyak, Indonesia Urutan Berapa? Retrieved from https://databoks.katadata.co.id/datapublish/2021/07/01/daftar-negara-pengguna-smartphone-terbanyak-indonesia-urutan-berapa#:~:text=Kemudian%2C Indonesia menempati posisi keempat,%2C6%25 dari total populasi.
Kim, H. W., Xu, Y., & Gupta, S. (2012). Which is more important in Internet shopping, perceived price or trust? Electronic Commerce Research and Applications, 11(3), 241–252. https://doi.org/10.1016/j.elerap.2011.06.003
Kumar, A., & Anjaly, B. (2017). How to measure post-purchase customer experience in online retailing? A scale development study. International Journal of Retail and Distribution Management, 45(12), 1277–1297. https://doi.org/10.1108/IJRDM-01-2017-0002
Kumar, Ashish, Dhingra, S., Batra, V., & Purohit, H. (2020). A Framework of Mobile Banking Adoption in India. Journal of Open Innovation: Technology, Market, and Complexity, 6(2), 1–17. https://doi.org/10.3390/JOITMC6020040
Liu, Y., & Dewitte, S. (2021). A replication study of the credit card effect on spending behavior and an extension to mobile payments. Journal of Retailing and Consumer Services, 60(August 2020), 102472. https://doi.org/10.1016/j.jretconser.2021.102472
Madan, K., & Yadav, R. (2018). Understanding and predicting antecedents of mobile shopping adoption: A developing country perspective. Asia Pacific Journal of Marketing and Logistics, 30(1), 139–162. https://doi.org/10.1108/APJML-02-2017-0023
Malik, A., Suresh, S., & Sharma, S. (2017). Factors influencing consumers’ attitude towards adoption and continuous use of mobile applications: A conceptual model. Procedia Computer Science, 122, 106–113. https://doi.org/10.1016/j.procs.2017.11.348
Marriott, H. R., & Williams, M. D. (2018). Exploring consumers perceived risk and trust for mobile shopping: A theoretical framework and empirical study. Journal of Retailing and Consumer Services, 42(February), 133–146. https://doi.org/10.1016/j.jretconser.2018.01.017
Medcom. (2021). Bisnis Layanan Pesan Antar Makanan Online Meningkat Selama Pandemi. Retrieved from https://www.medcom.id/ekonomi/bisnis/8kolVnWK-bisnis-layanan-pesan-antar-makanan-online-meningkat-selama-pandemi
Olivier, X., & Terblanche, N. S. (2016). An investigation into the antecedents and outcomes of the m-shopping experience. The Business and Management Review, 7(5), 263–287.
Osei-Frimpong, K. (2019). Understanding consumer motivations in online social brand engagement participation: Implications for retailers. International Journal of Retail and Distribution Management, 47(5), 511–529. https://doi.org/10.1108/IJRDM-08-2018-0151
Qin, L., Kim, Y., & Tan, X. (2018). Understanding the Intention of Using Mobile Social Networking Apps Across Cultures. International Journal of Human-Computer Interaction, 34(12), 1183–1193. https://doi.org/10.1080/10447318.2018.1428262
Reimers, V., & Clulow, V. (2009). Retail centres: It’s time to make them convenient. International Journal of Retail & Distribution Management, 37(7), 541–562. https://doi.org/10.1108/09590550910964594
Sane, V., & Chopra, K. (2014). Analytical Study of Shopping Motives of Young Customers for Selected Product Categories with Reference to Organized Retailing in Select Metropolitan Select Cities of India. Procedia - Social and Behavioral Sciences, 133, 160–168. https://doi.org/10.1016/j.sbspro.2014.04.181
Savastano, M., Bellini, F., D’Ascenzo, F., & De Marco, M. (2019). Technology adoption for the integration of online–offline purchasing: Omnichannel strategies in the retail environment. International Journal of Retail and Distribution Management, 47(5), 474–492. https://doi.org/10.1108/IJRDM-12-2018-0270
Shankar, A., & Datta, B. (2018). Factors Affecting Mobile Payment Adoption Intention: An Indian Perspective. Global Business Review, 19(3_suppl), S72–S89. https://doi.org/10.1177/0972150918757870
Shankar, A., & Kumari, P. (2016). Factors affecting mobile banking adoption behavior in India. Journal of Internet Banking and Commerce, 21(1), 1–24.
Singh, N., Sinha, N., & Liébana-Cabanillas, F. J. (2020). Determining factors in the adoption and recommendation of mobile wallet services in India: Analysis of the effect of innovativeness, stress to use and social influence. International Journal of Information Management, 50(May 2019), 191–205. https://doi.org/10.1016/j.ijinfomgt.2019.05.022
Singh, R. (2019). Why do online grocery shoppers switch or stay? An exploratory analysis of consumers’ response to online grocery shopping experience. International Journal of Retail and Distribution Management, 47(12), 1300–1317. https://doi.org/10.1108/IJRDM-10-2018-0224
Taylor, D. G., & Levin, M. (2014). Predicting mobile app usage for purchasing and information-sharing. International Journal of Retail and Distribution Management, 42(8), 759–774. https://doi.org/10.1108/IJRDM-11-2012-0108
Taylor, E. (2016). Mobile payment technologies in retail: a review of potential benefits and risks. International Journal of Retail and Distribution Management, 44(2), 159–177. https://doi.org/10.1108/IJRDM-05-2015-0065
Teller, C., Brusset, X., & Kotzab, H. (2019). Physical and digital market places – where marketing meets operations. International Journal of Retail and Distribution Management, 47(12), 1225–1231. https://doi.org/10.1108/IJRDM-12-2019-299
Tenenhaus, M., Vinzi, V. E., Chatelin, Y. M., & Lauro, C. (2005). PLS path modeling. Computational Statistics and Data Analysis, 48(1), 159–205. https://doi.org/10.1016/j.csda.2004.03.005
Ting, H., Yacob, Y., Liew, L., & Lau, W. M. (2016). Intention to Use Mobile Payment System: A Case of Developing Market by Ethnicity. Procedia - Social and Behavioral Sciences, 224(August 2015), 368–375. https://doi.org/10.1016/j.sbspro.2016.05.390
Ünal, S., Erci?, A., & Keser, E. (2011). Attitudes towards mobile advertising - A research to determine the differences between the attitudes of youth and adults. Procedia - Social and Behavioral Sciences, 24, 361–377. https://doi.org/10.1016/j.sbspro.2011.09.067
Wang, Y. S., Tseng, T. H., Wang, W. T., Shih, Y. W., & Chan, P. Y. (2019). Developing and validating a mobile catering app success model. International Journal of Hospitality Management, 77(December 2016), 19–30. https://doi.org/10.1016/j.ijhm.2018.06.002
Wetzels, M., Odekerken-Schroder, G., & Oppen, C. Van. (2009). Using PLS path modeling for assessing hierarchical construct models: guidelines and empirical illustration. MIS Quarterly, 33(1), 177–195.
Yang, Y., Liu, Y., Li, H., & Yu, B. (2015). Understanding perceived risks in mobile payment acceptance. Industrial Management and Data Systems, 115(2), 253–269. https://doi.org/10.1108/IMDS-08-2014-0243
Ye, P.-H., & Liu, L.-Q. (2017). Influence Factors of Users Satisfaction of Mobile Commerce -An Empirical Research in China. Advances in Economics, Business and Management Research, 50, 208–217. https://doi.org/10.2991/mse-17.2017.50
Yeo, S. F., Tan, C. L., Teo, S. L., & Tan, K. H. (2021). The role of food apps servitization on repurchase intention: A study of FoodPanda. International Journal of Production Economics, 234(February), 108063. https://doi.org/10.1016/j.ijpe.2021.108063
